martes, 8 de septiembre de 2009

FLOPPY, ZIP Y HD

DISQUETE


Disquete o Disco flexible, en ordenadores o computadoras, un elemento plano de mylar recubierto con óxido de hierro que contiene partículas minúsculas capaces de mantener un campo magnético, y encapsulado en una carcasa o funda protectora de plástico. La información se almacena en el disquete mediante la cabeza de lectura y escritura de la unidad de disco, que altera la orientación magnética de las partículas. La orientación en una dirección representa el valor binario 1, y la orientación en otra el valor binario 0.
Dependiendo de su capacidad, un disco de este tipo puede contener desde algunos cientos de miles de bytes de información hasta un millón. Un disco de 3½ pulgadas encerrado en plástico rígido se denomina normalmente disquete pero puede llamarse también disco flexible.
2. Manejo y Cuidado de los Disquetes
- Se debe tener cuidado con los disquetes porque los pequeños rasguños, polvo o partículas pueden hacer inusuales la información.
· No tocar la superficie gravable.
· Mantener alejado el disquete de campos de fuentes magnéticas, como por ejemplo calculadoras, teléfonos, etc.
3. Estructura del Disco Flexible
El soporte magnético de un disco flexible está constituido por material magnético depositado sobre un soporte circular de plástico llamado "Mylar", el cual es flexible y de alta calidad. El material magnético puede cubrir una o las dos caras del soporte.
4. Organización de un Disquete
Se puede establecer cierto paralelismo entre el disquete y el disco de música, este ultimo almacena la música grabada en el surco espiral de la superficie de plástico; el disco flexible almacena los datos en forma .de señales magnéticas en la superficie.
ZIP

En informática, ZIP o zip es un formato de almacenamiento sin pérdida, muy utilizado para la compresión de datos como imágenes, programas o documentos.
Para este tipo de archivos se utiliza generalmente la extensión ".Zip".
Muchos programas, tanto comerciales como libres, lo utilizan y permiten su uso más habitual.

Historia

El formato ZIP fue creado originalmente por Phil Katz, fundador de PKWARE. Katz liberó al público la documentación técnica del formato ZIP, y lanzó al mismo tiempo la primera versión de PKZIP en enero de 1986.
Katz había copiado ARC y convertido las rutinas de compresión de C a un código optimizado en ensamblador, que lo hacía mucho más rápido. Inicialmente, SEA intentó obtener una licencia por el compresor de Katz, llamado PKARC, pero Katz lo rechazó. SEA demandó entonces a Katz por infringir el copyright, y ganó.

Información técnica

ZIP es un formato de fichero bastante simple, que comprime cada uno de los archivos de forma separada. Comprimir cada archivo independientemente del resto de archivos comprimidos permite recuperar cada uno de los ficheros sin tener que leer el resto, lo que aumenta el rendimiento. El problema, es que el resultado de agrupar un número grande de pequeños archivos es siempre mayor que agrupar todos los archivos y comprimirlos como si fuera uno sólo. Éste último comportamiento es el del, también conocido, algoritmo de compresión RAR. A cambio, esto permite extraer cada archivo de forma independiente sin tener que procesar el archivo desde el principio.
La especificación de ZIP indica que cada archivo puede ser almacenado, o bien sin comprimir, o utilizando una amplia variedad de algoritmos de compresión. Sin embargo, en la práctica, ZIP se suele utilizar casi siempre con el algoritmo de Phil Katz.
ZIP soporta un sistema de cifrado simétrico basado en una clave única. Sin embargo, este sistema de cifrado es débil ante ataques de texto plano, ataque de diccionario y fuerza bruta. También soporta distribuir las partes de un archivo comprimido en distintos medios, generalmente disquetes.
Con el tiempo, se han ido incluyendo nuevas características, como nuevos métodos de cifrado. Sin embargo, estas nuevas características no están soportadas por las aplicaciones más utilizadas.



DISCO DURO

Dentro de un disco duro hay uno o varios platos (entre 2 y 4 normalmente, aunque hay hasta de 6 ó 7 platos), que son discos (de aluminio o cristal) concéntricos y que giran todos a la vez. El cabezal (dispositivo de lectura y escritura) es un conjunto de brazos alineados verticalmente que se mueven hacia dentro o fuera según convenga, todos a la vez. En la punta de dichos brazos están las cabezas de lectura/escritura, que gracias al movimiento del cabezal pueden leer tanto zonas interiores como exteriores del disco.
Cada plato tiene dos caras, y es necesaria una cabeza de lectura/escritura para cada cara (no es una cabeza por plato, sino una por cara). Si se mira el esquema Cilindro-Cabeza-Sector (más abajo), a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros) ó 3 millonésimas de milímetro. Si alguna llega a tocarlo, causaría muchos daños en el disco, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200 revoluciones por minuto se mueve a 129 km/h en el borde de un disco de 3,5 in.
Direccionamiento


Cilindro, Cabeza y Sector


Pista (A), Sector (B), Sector de una pista (C), Cluster (D)
Hay varios conceptos para referirse a zonas del disco:
Plato: cada uno de los discos que hay dentro del disco duro.
Cara: cada uno de los dos lados de un plato
Cabeza: número de cabezales;
Pista: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
Sector: cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y usa más eficientemente el disco duro.
El primer sistema de direccionamiento que se usó fue el CHS (cilindro-cabeza-sector), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo: LBA (direccionamiento lógico de bloques), que consiste en dividir el disco entero en sectores y asignar a cada uno un único número. Este es el que actualmente se usa.

Tipos de conexión

Si hablamos de disco rígido podemos citar a los distintos tipos de conexión que poseen los mismos con la placa madre, es decir pueden ser SATA, IDE o SCSI.
IDE: Integrated Device Electronics ("Dispositivo con electrónica integrada") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta hace poco, el estándar principal por su versatilidad y relación calidad/precio.
SCSI: Son discos duros de gran capacidad de almacenamiento. Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 mseg y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2).
Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que los vuelve más rápidos.
SATA (Serial ATA): Nuevo estándar de conexión que utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. En la actualidad hay dos versiones, SATA 1 de hasta 1,5 Gigabits por segundo (150 MB/s) y SATA 2 de hasta 3,0 Gb/s (300 MB/s) de velocidad de transferencia.

Factor de forma

El más temprano "factor de forma" de los discos duros, heredó sus dimensiones de las disqueteras. Pueden ser montados en los mismos chasis y así los discos duros con factor de forma, pasaron a llamarse coloquialmente tipos FDD "floppy-disk drives" (en inglés).
La compatibilidad del "factor de forma" continua siendo de 3½ pulgadas (8,89 cm) incluso después de haber sacado otros tipos de disquetes con unas dimensiones más pequeñas.
8 pulgadas: 241,3×117,5×362 mm (9,5×4,624×14,25 pulgadas).En 1979, Shugart Associates sacó el primer factor de forma compatible con los disco duros, SA1000, teniendo las mismas dimensiones y siendo compatible con el interfaz de 8 pulgadas de las disqueteras. Había dos versiones disponibles, la de la misma altura y la de la mitad (58,7mm).
5,25 pulgadas: 146,1×41,4×203 mm (5,75×1,63×8 pulgadas). Este factor de forma es el primero usado por los discos duros de Seagate en 1980 con el mismo tamaño y altura máxima de los FDD de 5¼ pulgadas, por ejemplo: 82,5 mm máximo.Éste es dos veces tan alto como el factor de 8 pulgadas, que comúnmente se usa hoy; por ejemplo: 41,4 mm (1,64 pulgadas). La mayoría de los modelos de unidades ópticas (DVD/CD) de 120 mm usan el tamaño del factor de forma de media altura de 5¼, pero también para discos duros. El modelo Quantum Bigfoot es el último que se usó a finales de los 90'.
3,5 pulgadas: 101,6×25,4×146 mm (4×1×5.75 pulgadas).Este factor de forma es el primero usado por los discos duros de Rodine que tienen el mismo tamaño que las disqueteras de 3½, 41,4 mm de altura. Hoy ha sido en gran parte remplazado por la línea "slim" de 25,4mm (1 pulgada), o "low-profile" que es usado en la mayoría de los discos duros.
2,5 pulgadas: 69,85×9,5-15×100 mm (2,75×0,374-0,59×3,945 pulgadas).Este factor de forma se introdujo por PrairieTek en 1988 y no se corresponde con el tamaño de las lectoras de disquete. Este es frecuentemente usado por los discos duros de los equipos móviles (portátiles, reproductores de música, etc...) y en 2008 fue reemplazado por unidades de 3,5 pulgadas de la clase multiplataforma. Hoy en día la dominante de este factor de forma son las unidades para portátiles de 9,5 mm, pero las unidades de mayor capacidad tienen una altura de 12,5 mm.
1,8 pulgadas: 54×8×71 mm.Este factor de forma se introdujo por Integral Peripherals en 1993 y se involucró con ATA-7 LIF con las dimensiones indicadas y su uso se incrementa en reproductores de audio digital y su subnotebook. La variante original posee de 2GB a 5GB y cabe en una ranura de expansión de tarjeta de ordenador personal. Son usados normalmente en iPods y discos duros basados en MP3.
1 pulgadas: 42,8×5×36,4 mm.Este factor de forma se introdujo en 1999 por IBM y Microdrive, apto para los slots tipo 2 de compact flash, Samsung llama al mismo factor como 1,3 pulgadas.
0,85 pulgadas: 24×5×32 mm.Toshiba anunció este factor de forma el 8 de enero de 2004 para usarse en móviles y aplicaciones similares, incluyendo SD/MMC slot compatible con disco duro optimizado para vídeo y almacenamiento para micromóviles de 4G. Toshiba actualmente vende versiones de 4GB (MK4001MTD) y 8GB (MK8003MTD) 5 y tienen el Record Guinness del disco duro más pequeño.
Los principales fabricantes suspendieron la investigación de nuevos productos para 1 pulgada (1,3 pulgadas) y 0,85 pulgadas en 2007, debido a la caída de precios de las memorias flash, aunque Samsung introdujo en el 2008 con el SpidPoint A1 otra unidad de 1,3 pulgadas.
En el 2008, dominaban los discos duros de 3,5" y 2,5".
El nombre de "pulgada" para los factores de forma normalmente no identifica ningún producto actual (son especificadas en milímetros para los factores de forma más recientes), pero estos indican el tamaño relativo del disco, para interés de la continuidad histórica.

No hay comentarios:

Publicar un comentario